z^2+9z+81/4=1+81/4

Simple and best practice solution for z^2+9z+81/4=1+81/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^2+9z+81/4=1+81/4 equation:



z^2+9z+81/4=1+81/4
We move all terms to the left:
z^2+9z+81/4-(1+81/4)=0
We add all the numbers together, and all the variables
z^2+9z+81/4-(81/4+1)=0
We get rid of parentheses
z^2+9z-1+81/4-81/4=0
We multiply all the terms by the denominator
z^2*4+9z*4+81-81-1*4=0
We add all the numbers together, and all the variables
z^2*4+9z*4-4=0
Wy multiply elements
4z^2+36z-4=0
a = 4; b = 36; c = -4;
Δ = b2-4ac
Δ = 362-4·4·(-4)
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{85}}{2*4}=\frac{-36-4\sqrt{85}}{8} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{85}}{2*4}=\frac{-36+4\sqrt{85}}{8} $

See similar equations:

| 14+2v=4v | | 20-8x+30-16x=90 | | 2200=22(p+40) | | 5.58-5.2/q=0.36 | | 8-3x=-34 | | 4u-13=35 | | 1128=6(19+x) | | 0.72s+7.07=24.64 | | 0.72 s+ 7.07=24.64 | | −3+4x=13 | | 8u^2+32u+24=0 | | Y=1.4+2,y | | 6x+7=6x+10 | | 7+78/f=9 | | 10+5x=66 | | 5*4.12310562562=x | | 10 + 5 x= 66 | | 3k^2-14k+13=0 | | n2+ 6.44= 9 | | -x-12=19 | | 4y+2-3=8 | | 12=5+9/w | | 127=6+11z | | 6(2x+4)-(3x-7)=48 | | Y=-0.013+0.018x | | 11+5x=-7-2x | | 5x+15=4x+30 | | k-3-4=10 | | 4+45/x=9 | | 2(2u-3)+5u=4(u-5)-2u | | 9w-3=78 | | 7.1x-8=22 |

Equations solver categories